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For 1�p��, sufficient conditions on the generators [,h]h>0 are given which
ensure that the h-dilates of the shift-invariant space generated by ,h provide
Lp-approximation of order k>0. Examples where ,h is an exponential box spline or
certain dilates of the Gaussian e&| } |2 are considered; it is shown that our sufficient
condition then provides an optimal lower bound on their approximation order.
� 1997 Academic Press

1. INTRODUCTION

Let d # N :=[1, 2, ...], and let C :=(&1�2 } } } 1�2)d denote the open unit
cube in Rd. Following [19], define

Lp :={ f # Lp(Rd) : & f &Lp
:=" :

j # Zd

| f ( } &j)| "Lp(C )

<�= , 1�p��.

Note that & f &L1
=& f &L1

�& f &Lp
�& f &Lp�

whenever 1�p�p� ��. It was
shown in [19] that if , # Lp , then the semi-discrete convolution operator
, V$ is a bounded operator from lp into Lp , where , V$ c :=, V$1 c and

, V$h c := :
j # Zd

c(hj) ,( } �h&j), h>0.

We define Sp(,) to be the image of , V$ on lp :

Sp(,) :={ :
j # Zd

c( j) ,( } &j) : c # lp= .

Sp(,) is said to be a shift-invariant space because f ( } &j) # Sp(,) whenever
f # Sp(,) and j # Zd. Since Sp(,) is ``generated'' by the shifts (i.e., integer
translates) of a single function, we call it a principal shift-invariant space.
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There are, in the literature, a number of ways of ``generating'' a shift-
invariant space from a single function , or a collection of functions 8. When
the details are unimportant we will simply write S(,) or S(8) to denote
this space. Shift-invariant (SI) spaces and principal shift-invariant (PSI)
spaces are important in many areas of approximation theory, including the
study of multivariate splines, radial basis function theory, sampling theory,
wavelets, and subdivision schemes.

We can dilate any PSI space S(,) by the parameter h>0 to obtain

Sh(,) :=[ f ( } �h) : f # S(,)].

The directed family (Sh(,))h is called a ladder of PSI spaces. When one has
in hand a ladder of PSI spaces (S h(,))h , a standard problem, and one
which has received considerable attention in the literature, is the deter-
mination of its Lp-approximation power, i.e., the determination of the rate
of decay of dist( f, Sh(,); Lp) (as h � 0) for sufficiently smooth f # Lp . Here

dist( f, A; X ) := inf
x # A

& f &x&X .

In the literature, the statement, ``(S h(,))h provides Lp-approximation of
order #'' has various definitions1; the essential ingredient is that

dist( f, Sh(,); Lp)=O(h#) for all sufficiently smooth f # Lp . (1.1)

Strang and Fix [34] have shown (see also [2, 12, 33]) that if , is a
compactly supported L2 function, then the ladder (S h

2(,))h provides
``controlled'' L2-approximation of order k # N if and only if ,� (0){0 and
one of the following two equivalent conditions holds:

\f # 6k&1 _g # 6k&1 such that f =, V$ g; (1.2)

D:,� ( j)=0 \|:|<k, j # 2?Zd "0. (1.3)

The qualifier ``controlled,'' as used above, places a restriction on how the
approximations to a smooth function can be drawn from S h

2(,) as h � 0;
hence, ``controlled'' approximation is stronger than unqualified approxima-
tion. Conditions (1.3) are now known as the Strang�Fix conditions of
order k. These conditions had previously been considered for d=1 by
Schoenberg [33]. Clarifications and extensions of [34] can be found in
Dahmen and Micchelli [11] and Jia [17]. Finally, de Boor and Jia [7],
using ``local'' rather than ``controlled'' approximation, extended the L2

result of [34] to Lp for all 1�p��. Later, interest in removing the
compact support assumption on the generator , developed and was
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investigated by Jackson [16], Buhmann [10], Light and Cheney [25], Jia and
Lei [18], and Halton and Light [15]. The following was proved in [18].

Theorem 1.4. Let , # L� satisfy for some $>0 and k # N

(i) |,(x)|=O( |x|&(d+k+$)) as |x| � �;

(ii) ,(x)= lim
= � 0

=&d |
x+=C

, for all x # Rd.

Then, for 1�p��, the ladder (S h
p(,))h provides ``controlled '' Lp-approx-

imation of order k if and only of ,� (0){0 and the Strang�Fix conditions of
order k are satisfied.

Here the ``control'' is a combination of that used in [34] and the ``local-
ness'' used in [7]. Note that the compact support assumption of
[7, 11, 34] has been replaced by the decay assumption (i) which, inciden-
tally, becomes stronger as the approximation order k increases. All of the
above-mentioned papers employ a technique known as quasi-interpolation�
polynomial reproduction for their error analysis. Note that polynomial
reproduction, as described in (1.2), requires that , V$ g be well defined for
g # 6k&1 , and hence the need for something like condition (i). In 1991, de
Boor and Ron [8] were able to completely overcome condition (i) by per-
forming their error analysis entirely in the Fourier-transformed domain.
Moreover, their results applied to a more general situation which we now
describe.

The ladder (Sh(,))h is known as a stationary ladder of PSI spaces
because it is obtained by dilating the same PSI space S(,). More generally
we may use, as the h-entry of our ladder, the h-dilate of an h-dependent
PSI space S(,h) to obtain a non-stationary ladder (S h(,h))h . While in the
stationary case properties of the ladder are hoped to be analyzed in terms
of corresponding properties of the single generator ,, we need, in the non-
stationary case, to inspect the entire family of generators (,h)h .

We can now state a sample from [8].

Theorem 1.5. Let (,h)h # (0 . .h0] be a family of functions in L� which
satisfy ,� {0 on all of $C for some $>0. If

sup
h # (0 . .h0]

:
j # Zd"0

" ,� h( } +2?j)

(hk+| } |k) ,� h
"L�($C )

<�,

then (S h
�(,h))h provides L�-approximation of order k.

Proof. [8; Section 2.5].
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Note that the only decay assumption imposed on ,h is the mild assump-
tion ,h # L� . Following this result, de Boor et al. [4] considered the case
p=2 where they were able to give a complete characterization of closed SI
subspaces of L2 which provide L2-approximation of order k>0. Their
results apply to non-stationary ladders of SI spaces and they make no
decay assumptions on the generators. Kyriazis [21], in turn, considered
stationary PSI spaces for the case 1<p<�. Sufficient conditions on the
generator , # Lp are given which, when satisfied, ensure that the stationary
ladder (S h(,))h provides Lp-approximation of order k>0. Again, no
explicit decay assumptions are made on the generator ,.

In the present paper, we are concerned with providing lower bounds on
the Lp-approximation order (1�p��) of non-stationary ladders of PSI
spaces under the mild decay assumption that the generators belong to Lp .
An outline is as follows:

In Section 2, we define our notion of Lp-approximation order, and we
state our main results. The proofs of these results comprise Section 5 and
Section 6. These results are applied to non-stationary ladders of PSI spaces
generated by exponential box splines and dilates of the Gaussian in Sec-
tion 3 and Section 4, respectively. The particularly long proof of a Proposi-
tion in Section 3 is postponed until Section 8. In Section 7, side conditions
are given under which the Strang�Fix conditions of order k are sufficient
to ensure that the stationary ladder (S h

p(,))h provides Lp-approximation of
order k.

Throughout this paper, |x| :=|x| 2 denotes the Euclidean norm of x # Rd

while for multi-indices : # [0, 1, 2, ...]d, |:| :=|:| 1 :=�d
i=1 |:i | . For open

0�Rd, 1�p��, and m # Z+ :=[0, 1, 2, ...] the Sobolev spaces W m
p (0)

are defined by

W m
p (0) :={ f : & f &Wp

m(0) :=\ :
|:|�m

&D:f & p
Lp(0)+

1�p

<�= ,

with the usual modification when p=�. Corresponding to each : # Zd
+ is

the power function ( ): : Rd � C defined by

( ): : x [ x: := `
d

i=1

x(i ):(i ).

The space of polynomials of total degree at most k is denoted 6k . The
open unit ball in Rd is denoted by B :=[x # Rd : |x|<1]. For f # L1 :=
L1(Rd ), we denote its Fourier transform by

f� (x) :=|
Rd

e&x(t) f (t) dt,
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where ex denotes the complex exponential given by

ex(t) :=eix } t.

The Fourier transform extends by duality to the space of tempered dis-
tributions. The inverse Fourier transform of a tempered distribution f is
denoted f 6 . The collection of compactly supported C�(Rd) functions is
denoted by C �

c and their Fourier transforms by C c
�@ . All derivates of func-

tions are to be understood as distributional. We use the symbol const to
denote generic constants. It always denotes a real value in the interval
(0 . .�) and depends only on its arguments. Its value may change with each
occurrence. When using the scaling parameter h as in (Sh(,h))h , it is
assumed without further mention that h # (0 . .h0] and h0 # (0 . .1].

2. THE MAIN RESULTS

In order to make precise the notion ``Lp -approximation of order #,'' we
need to specify which functions f # Lp are sufficiently smooth. This will be
the Besov space B#, 1

p which we now define. Let ' # Cc
�@ satisfy '̂=1 on a

neighorhood of the origin, and for tempered distributions f, define

fk :={('̂(2} ) f� )6,
((n̂(21&k } )&'̂(22&k } )) f� )6,

if k=0,
if k>0.

(2.1)

For 1�p��, #�0, 1�q��, the Besov space B#, q
p (see [26]) can be

defined as the collection of all tempered distributions f for which

& f &Bp
#, q(') :=\ :

�

k=0

2#k & fk&q
Lp+

1�q

<�,

with the usual modification when q=�. It is known that B#, q
p is a Banach

space and, as such, is independent of the choice of ' (i.e., different choices
of ' yield equivalent norms). We mention the following continuous imbed-
dings (cf. [26, p. 62]),

B#, q
p

/�B#1 , q1
p , if #1<# or #1=#, q1�q;

Bk, 1
p

/�W k
p(Rd)/�Bk, �

p , if k # Z+ ;

B#, 1
p

/�H#
p
/�B#, �

p , if 1<p<�,

where H#
p is the potential space normed by

& f &H#
p

:=&((1+| } | 2)#�2 f� )6&Lp , #�0, 1<p<�.
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Definition 2.2. Let 1�p�� and let (,h)h # (0 ..h0] be a family in Lp .
We say that the ladder (S h

p(,h))h provides Lp -approximation of order #>0
if there exists c<� such that

dist( f, S h
p(,h); Lp)�ch# & f &Bp

#, 1(') , \h # (0 . .h0], f # B#, 1
p .

We mention that it is a straightforward matter to show that if (S h
p(,h))h

provides Lp-approximation of order #, then

dist( f, S h
p(,h); Lp)=O(h*) as h � 0 \f # B*, �

p , 0<*<#

dist( f, S h
p(,h); Lp)=O(h# |log h| ) as h � 0 \f # B#, �

p .

Throughout the remainder of this section, the exponent p� will lie in the
range 1�p� ��, the family of functions (,h)h # (0 . .h0] will belong to Lp� , $
will lie in (0. .2?), and ' will be a function in Cc

�@ which satifies

supp '̂/$C and '̂=1 on 1
2$C,

where C=(&1
2 . . 1

2)d.
The result which forms the foundation of the present paper is the

following:

Theorem 2.3. If

sup
0<r�h

dist(', S h
1(,r); Lp� )=O(h#) as h � 0, (2.4)

then (S h
p(,h))h provides Lp-approximation of order # for all 1�p�p� .

Proof. cf. Section 6.

Note that in the stationary case, a necessary condition for (S h
p(,))h to

provide Lp -approximation of order # is that

dist(', S h
p(,); Lp)=O(h#) as h � 0. (2.5)

Theorem 2.3 says that a condition slightly stronger than (2.5) (in fact,
identical when p=1) is actually sufficient:

dist(', S h
1(,); Lp)=O(h#) as h � 0. (2.6)

In the non-stationary case, condition (2.6) suffices provided that it is
equipped with a certain downward uniformity as described in (2.4). Once
(2.4) has been established, the fact that we then obtain Lp-approximation
orders for all 1�p�p� is a simple consequence of the fact that & }&Lp

�& }&Lp�
.
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With Theorem 2.3 in hand the job of establishing lower bounds on the
Lp-approximation order of (S h

p(,h))h , 1�p�p� , can be performed by
estimating the ability of S h

1(,r) to approximate ' in Lp� . One means for this
is to choose s # S h

1(,r) so that ŝ='̂ on 2?C�h, and then conclude that

dist(', S h
1(,r); Lp� )�&'&s&Lp�

. (2.7)

This approach yields the following estimates:

Proposition 2.8. Assume that ,� h(h0 } ){0 on all of $C, \0<h<h0 .
Then for 0<r�k�h0 ,

(1) dist(', S h
1(,r); Lp� )�"\,� r(h } ) :

j # Zd"0

'̂( } +2?j�h)

,� r(h } +2?j)+
6

"
Lp�

;

(2) dist(', S h
1(,r); Lp� )� :

j # Zd"0
"\'̂,� r(h } +2?j)

,� r(h } ) +
6

"
Lp�

;

(3) dist(', S h
1(,r); Lp� )�const(d, ', p� ) \ :

j # Zd"0
",� r(h } +2?j)

,� r(h } ) "
q�

Wq�
m($C )+

1�q�

,

where (3) holds if 2�p� �� in which case q� is the exponent conjugate to p�
(i.e., satisfying 1�p� +1�q� =1) and m is the least integer satisfying m>d�q� .

Proof. cf. Section 6.

The proposition is intended to be used in conjunction with Theorem 2.3.
The estimate (1) is actually a rewording of (2.7). The estimate (2) derives
from (1) simply by pulling the summation outside of the norm. (3) derives
from (1) using the crude estimate

&g&Lp�
�const(d, ', p� ) &g� &W q�

m(Rd).

In Section 4 we will use Theorem 2.3 in conjunction with Proposition 2.8
(2) to invetigate the approximation order of non-stationary ladders
generated by dilates of the Gaussian e&| } |2. In Section 7, we apply
Theorem 2.3 in conjunction with Proposition 2.8 (1) to show that in the
stationary case, under certain side conditions, the Strang�Fix conditions of
order k are sufficient to obtain approximation of order k. Here is a sample.

Theorem 2.9. Let , # L� satisfy ,� # Cd+1($C) and ,� # W d+k
1 ($C+2?Zd"0).

If ,� (0){0 and , satisfies the Srang�Fix conditions of order k (1.3), then the
stationary ladder (S h

p(,))h provides Lp -approximation of order k for all
1�p��.

285APPROXIMATION ORDER OF SHIFT-INVARIANT SPACES
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Proof. cf. Section 7.

An alternative means for estimating the Lp� distance between ' and
S h

1(,r) is to take existing results for convergence in Lp� and then show that
when the approximand is ', the convergence is actually in Lp� . Since ' # C c

�@
decays rapidly it is not surprising that the Lp� convergence can be lifted to
Lp� if the approximation scheme is sufficiently local (condition (i) below).

Theorem 2.10. Assume that there exists �h # S1(,h), h # (0. .h0], such
that for some N # N and c1 , c2<�,

(i) |�h(x)|�c1(1+|x| )&(d+#), \x # Rd, h # (0 . .h0];

(ii) & f &�r V$h f &Lp� �c2 & f &N h#, \0<r�h�h0 , f # C �
c ,

where & f &N :=max|:|�N maxx # Rd (1+|x| 2)N |(D:f )(x)|.

Then

sup
0<r�h

dist(', S h
1(,r); Lp� )=O(h#) as h � 0.

Hence, by Theorem 2.3, (S h
p(,h))h provides Lp -approximation of order # for

all 1�p�p� .

Proof. cf. Section 6.

By employing an error analysis like that of [8] in order to verify condi-
tion (ii) of Theorem 2.10, we obtain the following result (compare with
Theorem 1.4).

Theorem 2.11. Let 2�p� �� and let q� be the exponent conjugate to p�
(i.e., satisfying 1�p� +1�q� =1). If there exist c, = # (0 . .�) such that

(i) |,h(x)|�c(1+|x| )&(d+W#X+=), \x # Rd, h # (0 . .h0];

(ii) inf
h # (0 . .h0]

|,� h(0)|>0;

(iii) A($, #, q� ) := sup
h # (0 . .h0] \ :

j # Zd"0
",� h( } +2?j)

h#+| } | # "
q�

L�($C )+
1�q�

<�,

then (S h
p(,h))h provides Lp-approximation of order # for all 1�p�p� .

Here, W#X denotes the least integer greater or equal to #. In Section 3,
using Theorem 2.10 and Theorem 2.11 as well as results from [20, 28, 31],
we will determine exactly the Lp-approximation order of exponential box
splines for 1�p��.

286 MICHAEL J. JOHNSON
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3. EXPONENTIAL BOX SPLINES

Example 3.1. Let 5 be a multiset of directions in Rd"0 whose span
covers all of Rd, and let * # C5. The family of exponential box splines ,h ,
h�0, is then defined by

,� h := `
! # 5

|h
! , where |h

!(x) :=|
1

0
e(h*!&i! } x) t dt. (3.2)

We will show that for all 1�p��, the Lp-approximation order of
(S h

p(,h))h is exactly k$ defined by

Kj :=[! # 5 : ! } j # Z"0], j # Zd "0;

k$ :=min[*Kj : j # Z d"0].

For a general reference on box splines, the reader is referred to [6].
Actually, most of the claim in 3.1 is already known in its essence (i.e., in
the sense of 1.1). The case when 5 is confined to integral directions and
*=0 has been settled in the work of [5]. The works of [13, 24, 27] treat
the case of integral 5 and general *. For p=�, [28, 31] have settled the
case of general 5 and *=0. Reference [8], also working with p=�, estab-
lished the upper bound on the approximation order for general 5 and
general *. They provided the lower bound in case ,0 was sufficiently
smooth and the directions in 5 were rational (while * is still general).
Reference [30] considers rational 5 and general *. For p=2, both the
lower bound and the upper bound are established. The lower bound on the
approximation order is established for 2<p�� excepting that in case
p=� it is required that ,� 0 # L1 . Reference [20] established the upper
bound on the approximation order for general 5 and general * for
1�p��. After completing the work on this example, I learned that
Kyriazis [22] has extended the techniques of [21] to include some non-
stationary ladders of PSI spaces. For 1<p<�, he establises the lower
bound for rational 5 and general * under the assumption that ,� 0 # L1 .

The remainder of this section is devoted to proving the claim in 3.1.
Since we are assuming that the directions in 5 span Rd it follows that ,h

is a piecewise-exponential polynomial function supported in 5[0. .1]m,
where m :=*5 (cf. [27]). Aslo, as a distribution, ,h has the following
representation:

|
Rd

,h f dm=|
[0 . .1]m

eh* } tf (5t) dt, f # C �
c .

287APPROXIMATION ORDER OF SHIFT-INVARIANT SPACES
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It was shown in [20] that for all f # Cc
�@ "0,

dist( f, Sh
p(,h); Lp){o(hk$) as h � 0,

where Sp(,h) is defined in [20]. For 1�p<�, Sp(,h) is defined to be the
closure in Lp of the finite linear span of the integer shifts of ,h . Conse-
quently, Sp(,h) is contained in Sp(,h) for 1�p<�. For p=� it was
shown [20; Proposition 2.2] that S�(,)/S�(,) whenever , satisfies

:
j # Zd

&,&L�( j+C )<�. (3.3)

Since ,h is bounded and compactly supported, (3.3) holds and we conclude
that for all f # Cc

�@ "0 and 1�p��,

dist( f, S h
p(,h); Lp){o(hk$) as h � 0.

Thus we need only concern ourselves with the task of showing that
(S h

p(,h))h provides Lp-approximation of order k$ for all 1�p��. Since
this task is vacuous when k$=0, we may assume that k$>0.

Lemma 3.4.

&,h&,0&L�
�const(d, *, 5) h, \h # [0 . .h0].

Proof. Since supp ,h/5[0. .1]m for all h�0, it suffices to show that

&,h&,0&L��const(d, *, 5) h, \h # [0. .h0].

Recall that for any piecewise continuous function g,

&g&L�=sup {} |Rd
gf dm } : f # C �

c , f �0 and & f &L1
=1= .

So let f # C�
c be such that f �0 and & f &L1

=1. Then

} |Rd
(,h&,0) f dm }= } |[0. .1]m

(eh* } t&1) f (5t) dt }
�const(d, *) h |

[0. .1]m
f (5t) dt

�const(d, *) h &,0&L�

=const(d, *, 5) h. K
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Note that as a consequence of the above lemma, we have that &,h&L� is
bounded independently of h # [0. .h0].

In order to consider first an easier case, assume (for the time being) that
k$=1. We will be applying Theorem 2.10 so let p� :=� and # :=1. It is
known (cf. [28, Theorem 2.8; 31] that

& f &,0 V$h f &L��const(d, 5 ) h & f &W1
�

, \f # W 1
� . (3.5)

Let �h :=,h , h # [0 . .h0]. That �h # S1(,h) is of course trivial, and since the
functions ,h as well as their supports are bounded independently of
h # [0. .h0], it follows that condition (i) of Theorem 2.10 is satisfied. In
order to verify condition (ii), let f # C �

c . Then, for 0<r�h�h0 ,

& f &�r V$h f &L��& f &,0 V$h f &L�+&(,0&,r) V$h f &L�

�const(d, 5 ) h & f &W1
�

+&,0&,r&L�
& f &L� ,

by (3.5) and Lemma 5.1,

�const(d, *, 5 ) h & f &1 by Lemma 3.4 as r�h.

Thus condition (ii) of Theorem 2.10 is satsified with N :=1 and we con-
clude therefore that (S h

p(,h))h provides Lp -approximation of order k$=1
for all 1�p��.

We turn now to the more difficult case k$>1 where we will apply
Theorem 2.11 with # :=k$ and p� :=�. It follows from (3.2) that there exists
$ # (0 . .?) and h0 # (0 . .1], depending only on (d, *, 5), such that

|,� h(x)|>$, \x # $C, h # [0. .h0],
(3.6)

|h*!&i! } x|<1 \x # $C, h # [0. .h0], ! # 5.

In particular, condition (ii) of Theorem 2.11 is satisfied. Since the functions
,h as well as their supports are bounded independently of h # [0. .h0], con-
dition (i) of Theorem 2.11 is satisfied.

In showing that condition (iii) of Theorem 2.11 is satisfied, we will be
following the approach taken in the Box Spline section of [8]. There,
A($, k$, 1)<� was established only when ,0 was sufficiently smooth and
5 was rational. Later, the sufficiently smooth aspect was identified [30] as
being when ,� 0 # L1 . The following proposition can be used to show that
,� 0 # L1 whenever k$>1.

Proposition 3.7. If k$>1, then

:
j # Zd"0

`
! # 5

1
1+|! } j |

<�.
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Proof. cf. Section 8.

The following lemma and its proof are taken almost directly from [8].
By placing 1+|! } j| in the denominator of our estimate (instead of |! } j| as
in [8, 30]) we get by without assuming 5 to be rational.

Lemma 3.8. For all j # Z d"0, h # [0 . .h0], and x # $C,

||h
!(x+2?j)|�

const(d, *, 5 )
1+|! } j | {1,

h+|x|,
! # 5"Kj

! # Kj .

Proof. Fix j # Z d"0, ! # 5, h # [0 . .h0], and x # $C. Note that

|h
!(x+2?j)={

1, if h*!&i! } x=2?i! } j

eh*!&i! } (x+2?j)&1
h*!&i! } x&2?i! } j

, otherwise.

Also, by (3.2) and (3.6), ||h
!(x+2?j)|�e.

Case 1. ! # 5"Kj .

If |! } j |�1, then the lemma holds with const(d, *, 5 )�2e. If, on the
other hand, |! } j |>1, then h*!&i! } x{2?i! } j and hence

||h
!(x+2?j)|�

e |h*! |+1
|2?! } j |&1

�
e+1

(2?&2) |! } j |+2 |! } j |&1

�
e+1

(2?&2) |! } j |+1
�

const(d, *, 5 )
1+|! } j |

.

Case 2. ! # Kj .

By (3.6), h*!&i! } x{2?i! } j; hence,

||h
!(x+2?j)|�

|eh*!&i! } x&1|
2? |! } j |&1

�
const(d, *, 5 )(h+|x| )

(2?&2) |! } j |+1

�
const(d, *, 5 )(h+|x| )

1+|! } j |
,

thus proving the lemma. K
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Therefore, by (3.2) and Lemma 3.8,

|,� h(x+2?j)|�const(d, *, 5 )(h+|x| )*Kj `
! # 5

1
1+|! } j |

�const(d, *, 5 )(hk$+ |x| k$) `
! # 5

1
1+|! } j |

,

\x # $C, j # Zd "0.

Hence, with Proposition 3.7 in view,

A($, k$, 1)�const(d, *, 5 ) :
j # Zd"0

`
! # 5

1
1+|! } j |

<�,

thus estabishing condition (iii) of Theorem 2.11. Therefore, by Theorem 2.11,
(S h

p(,h))h provides Lp -approximation of order k$ for all 1�p��.

4. THE GAUSS KERNEL

Example 4.1. For h # (0 . .1], define ,h by

,� h(x) :=e&+(h) |x|2�4?2
, where +(h) :=# log(e�h)

for some #>0. We will show that the Lp-approximation order of (S h
p(,h))h

is exactly # for all 1�p��.

That (S h
p(,h))h provides Lp-approximation of order # (in, say, the sense

of (1.1)) is known for p=� and p=2. For the precise details see [3; 8;
Theorem 3.8] ( p=�) and [29, Corollary 2.35] ( p=2). As for the upper
bound on the approximation order, it was shown in [20] that there exists
f # C c

�@ "0 such that

dist( f, Sh
p(,h); Lp){o(h#) as h � 0,

where Sp(,h) is defined in [20]. As mentioned in the discussion prior to
(3.3), Sp(,h)/Sp(,h) for all 1�p�� (as (3.3) holds in case p=�).
Hence the Lp-approximation order of (S h

p(,h))h cannot exceed #.
The task of showing that (S h

p(,h))h provides Lp -approximation of order
# is simplified by making use of the tensor product nature of ,h and by
employing the following:
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Lemma 4.2. Let fi # L�(R), i=1, 2, ..., d, be continuous and define
f (x) := f1(x1) f2(x2) } } } fd (xd), x # Rd. Then

& f &L�(Rd )� `
d

i=1

& fi&L�(R) .

Proof. The lemma is clear when d=1. Proceeding by induction, assume
the lemma to be true for d $=d&1 and consider d. Let x # Rd. Then

:
j # Zd

| f (x+ j)|= :
k # Zd&1

| f1(x1+k1) f2(x2+k2) } } } fd&1(xd&1+kd&1)|

_ :
n # Z

| fd (xd+n)|

�\ `
d&1

i=1

& fi&L�(R)+ :
n # Z

| fd (xd+n)|,

by induction hypothesis,

�\`
d

i=1

& fi&L�(R)+
which proves the lemma. K

Let { # C�(R) be supported in (&1. .1) and be such that {=1 on
[&1�2. .1�2]. Define '̂(x) :={(x1) {(x2) } } } {(xd), x # Rd. Note that ' # Cc

�@ ,
supp '̂/2C, and '̂=1 on C. Now for j # Zd,

'̂(x) ,� r(hx+2?j)

,� r(hx)
= `

d

i=1

{(xi) e&+(r)(hxi ji �?+j i
2). (4.3)

Define

a(k) :=&({e&+(r)(k2+hk }�?))6&L�(R) , k # Z.

Then

1(r, h) := :
j # Zd"0

"\'̂,� r(h } +2?j)

,� r(h } ) +
6

"
L�

� :
j # Zd"0

`
d

i=1

a( ji), by Lemma 4.2 and (4.3),

�d :
k # Z"0

a(k) :
j # Zd&1

`
d&1

i=1

a( ji)

=d \ :
k # Z

a(k)+
d&1

:
k # Z"0

a(k). (4.4)
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By Lemma 5.2,

&({g)6&L�(R)�const &{g&W 1
2(R)�const({) &g&W 1

2([&1. .1]) ,

\g # W 2
1([&1. .1]).

In particular, for k # Z"0,

a(k)
const({)

�&e&+(r)(k2+hk }�?)&W1
2([&1. .1])

=&(1++(r) h |k|�?+(+(r) hk�?)2) e&+(r)(k2+hk }�?)&L1([&1. .1])

�(2+1++(r) h |k|�?) e&+(r)(k2&h |k|�?).

Hence,

:
k # Z"0

a(k)�const({)(1++(r) h) :
�

k=1

ke&+(r)(k2&hk�?)

=const({)(1++(r) h) e&+(r)(1&h�?) :
�

k=1

ke&+(r)(k2&1&h(k&1)�?)

�const({)(1++(r) h) e&+(r)(1&h�?) \1+ :
�

k=2

ke&+(r) k+
�const({)(1++(r) h) e&+(r)(1&h�?), since +(r)�1.

Combining this with (4.4) yields

1(r, h)�d(&{6&L�
+const({)(1++(r) h) e&+(r)(1&h�?))d&1

_const({)(1++(r) h) e&+(r)(1&h�?).

Noting that +(r) e&+(r)(1&1�?) is bounded independently of r, we conclude
that

1(r, h)�const(d, {)(1++(r) h) e&+(r)(1&h�?). (4.5)

Applying elementary differential calculus to (4.5), it can be shown that

sup
0<r�h

1(r, h)�const(d, {, #) h#, \0<h�1.

Therefore, by Theorem 2.3 in conjugation with Proposition 2.8 (2),
(S h

p(,h))h provides Lp -approximation or order # for all 1�p��.
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5. SOME USEFUL LEMMATA

In this section we march out a few results which will be useful in proving
our main results. At the outset of the Introduction, we mention a result of
[19]. It can be stated in slightly more generality as follows:

Lemma 5.1. Let 1�p�� and let , # Lp . Then

&, V$h f &Lp�&,&Lp
hd�p & f & lp(hZd) , \f # lp(hZ d ).

Proof. See [19, Theorem 2.1] for the case h=1. The general case h>0
can now be derived from the fact that &g( } �h)&Lp=hd�p &g&Lp . K

The following lemma gives an estimate of the Lp norm of a function g
in terms of ĝ for 2�p��.

Lemma 5.2. Let 2�p�� and let q be the exponent conjugate to p (i.e.,
satisfying 1�p+1�q=1). Let m be the least integer satisfying m>d�q. Then

&g&Lp
�const(d, p) &ĝ&W q

�(Rd) , \ĝ # W m
q (Rd).

Proof. Let ĝ # W m
q (Rd). Then

&g&Lp
� :

j # Zd

&g&Lp( j+C )= :
j # Zd

(1+| j | )&m (1+| j | )m &g&Lp( j+C )

�\ :
j # Zd

(1+| j | )&mq+
1�q

&((1+| j | )m &g&Lp( j+C )) j & lp(Zd) ,

by Ho� lders inequality,

�const(d, p) &(&(1+| } | )m g&Lp( h+C )) j& lp(Zd )

=const(d, p) &(1+| } | )m g&Lp . (5.3)

By the Hausdorff�Young theorem (cf. [23, p. 142]),

& f &Lp�const(d ) & f� &Lq , \f� # Lq . (5.4)

Since (&ix): f (x)=\D:f� +
6

\x+ it is easy to extend (5.4) to obtain

&(1+| } | )m f &Lp�const(d, p) & f� &Wq
m(Rd ) , \f� # W m

q (Rd). (5.5)

The lemma now follows by (5.3) and (5.5). K

The following lemma shows that the lp norm of band-limited functions
is dominated by their Lp norm. Actually, they are equivalent, but we need
only this direction here.
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Lemma 5.6. For all h>0 and 1�p��,

hd�p & f & lp(hZd )�const(d ) & f &Lp(Rd ) ,

whenever f # Lp and supp f� /h&12?C.

Here, we employ the slightly abusive notation

& f & lp(hZd ) :=& f |hZd& lp(hZd ) .

Proof. It suffices to prove the lemma for the special case h=1 since the
general case h>0 can then be obtained by scaling. For a proof when h=1,
see [14, Lemma 1]. K

The following lemmata show how the semi-discrete convolution acts in
the Fourier-transformed domain.

Lemma 5.7. Let , # Cc
�@ , and let f be a tempered distribution such that

supp f� is compact. Then for all h>0,

(, V$h f )7=,� (h } ) :
j # Zd

f� ( } &2?j�h).

Proof. It suffices to prove the lemma for the case h=1 since the general
case h>0 can then be obtained by scaling. We prove the lemma first for
the special case f # Cc

�@ . So assume temporarily that f # Cc
�@ . We then have

by Poisson's summation formula (cf. [35, Chap. 7])

:
j # Zd

f� (x&2?j)= :
j # Zd

(e&x f )7 (2?j)

= :
j # Zd

e&x( j) f ( j)= :
j # Zd

f ( j) e&j (x), \x # Rd. (5.8)

Since , # Cc
�@ /L1 and �j # Zd | f ( j)|<�,

(, V$ f )7 (x)= :
j # Zd

f ( j)(,( } &j))7 (x)= :
j # Zd

f ( j) ,� (x) e&j (x)

=,� (x) :
j # Zd

f� (x&2?j), by (5.8),

and thus proving the lemma for the special case f # Cc
�@ . For the general

case, let _n be a delta sequence in C �
c (e.g., _n :=nd_(n } ) with _ # C �

c ,
_�0, and � _=1). Put fn :=_̂n f, n # N. Then since fn # Cc

�@ , we have that

(, V$ fn)7=,� :
j # Zd

f� n( } &2?j), n # N.
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Since supp f� is compact, it follows (cf. [32, Theorem 6.32]) that f� n � f� in
the space of tempered distributions. Therefore,

,� :
j # Zd

f� n( } &2?j) � ,� :
j # Zd

f� ( } &2?j)

in the space of tempered distributions (as ,� # C �
c implies that sums can be

taken over some finite subset of Zd ). Thus, the lemma will be proved as
soon as we show that

(, V$ fn)7 � (, V$ f )7 (5.9)

in the space of tempered distributions. For that, note that since supp f� is
compact, there exists N # Z+ such that | f (x)|=O( |x|N) as |x| � � (cf.
[32, Theorems 6.8, 7.23]). Hence,

sup
j # Zd

| f ( j)& fn( j)| (1+| j | )&(N+1) � 0 as n � �.

It now follows from the rapid decay of , # Cc
�@ that , V$ fn � , V$ f

in the space of tempered distributions. Therefore, (5.9) holds (cf. [32,
Theorem 7.15]). K

The assumption that , # Cc
�@ above is too strong for most purposes. It

can be relaxed provided that we further restrict f.

Lemma 5.10. Let , # L1 . If f # L1 and supp f� is compact, then for all
h>0,

& f & l1(hZd )<�;

(, V$h f )7=,� (h } ) :
j # Zd

f� ( } &2?j�h).

Proof. It suffices to prove the lemma for the case h=1 since the general
case h>0 can then be obtained by scaling. Let f # L1 be such that f� is
of compact support. There exists a sufficiently large n # N such that
supp f� /n?2C. Hence, by Lemma 5.6,

n&d & f & l1(n&1Zd )�M0 & f &L1(Rd ) .

Since Z d/n&1 Z d, it follows that & f & l1(Zd)<�. Hence , V$ f # L1 and

(, V$ f )7=,� :
j # Zd

f ( j) e& j=,� :
j # Zd

f (&j) ej .
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It is now a straightforward matter to complete the proof by verifying that
f (& j) is in fact the j th Fourier coefficient of the 2?Zd-periodic function
�j # Zd f� ( } &2?j). K

Lemma 5.11 (Wiener's Lemma). Let f, g # L1 be such that supp f� is
compact and ĝ(x){0 for all x # supp f� . Then

\ f�
ĝ+

6

# L1 .

Proof. cf. [32, Theorem 11.6].

In the following lemma, a description is given for a multi-level
approximation scheme employing the dilated shifts of a function '. In sub-
sequent theorems, this approximation scheme will be used except that '
will be replaced by a suitable approximation of ' drawn from dilates of
S1(,h).

Lemma 5.12. Let 1�p��, and let ' # Cc
�@ and $ # (0 . . 2?) be such that

supp '̂/$C and '̂=1 on 1
2 $C. For h # (0 . . 1], let n :=n(h) be the largest

integer for which 2nh�1. Let #>0. For f # B#, 1
p , let [ fk]k # Z+

be as in (2.1).
Then for all h # (0 . . 1]

(1) fk=' V$h2n&k fk , \k # Z+;

(2) (h2n&k)d�p & fk& lp(h2n&kZd)�const(d ) & fk&Lp , \k # Z+;

(3) " f & :
n

k=0

fk"Lp

�h# & f &Bp
#, 1(') .

Proof. Note that supp f� k is compact. Hence, by Lemma 5.7,

(' V$h2n&k fk)7='̂(h2n&k } ) :
j # Zd

f� k( } &2?j�(h2n&k)).

by (2.1), supp f� k�supp '̂(21&k } )�2k&1=C, \k # Z+. It is now a
straightforward matter to verify that '̂(h2n&k } ) and f� k( } &2?j�(h2n&k))
have disjoint supports whenever j # Zd "0 and that '̂(h2n&k } )=1 on the
support of f� k . Therefore, (n V$h2n&k fk)7= f� k which proves (1). Now,

supp( fk(h2n&k } ))7�h2n&k2k&1=C/2?C.

Hence, by Lemma 5.6,

& fk& lp(h2n&kZd )=& fk(h2n&k } )& lp(Zd )�const(d ) & fk(h2n&k } )&Lp

=const(d )(h2n&k)&d�p & fk&Lp .
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Hence (2). In order to verify (3), note that

f� & :
n

k=0

f� k=\'̂(2 } )+ :
�

k=1

('̂(21&k } )&'̂(22&k } ))+ f�

&\'̂(2 } )+ :
n

k=1

('̂(21&k } )&'̂(22&k } ))+ f�

=f� :
�

k=n+1

('̂(21&k } )&'̂(22&k } )).

Therefore,

" f & :
n

k=0

fk"Lp

� :
�

k=n+1

& fk&Lp�2&(n+1) # :
�

k=n+1

2k# & fk&Lp

�h# & f &Bp
#, 1(') . K

6. THE PROOFS OF THE MAIN RESULTS

In this section, we prove Theorem 2.3, Proposition 2.8, Theorem 2.10,
and Theorem 2.11. The technique used in proving Theorem 2.3 might well
be called approximation by replacement. In order to approximate f # Lp

from S h
p(,h), we start with a very good approximation to f written using

various dilates of the shifts of a certain function ' (i.e., the scheme
described in Lemma 5.12). By replacing each instance of ' with an
approximation to ' from an appropriate dilate of S1(,h), we then obtain an
approximation to f from S h

p(,h) whose closeness to f can be estimated in
terms of how well each replacement actually approximates '. It turns out
that these replacements need to approximate ' not in Lp , but rather in Lp .
This is because ' appears in expressions like ' V$ a, a # lp , where the small-
ness of &�&'&Lp does not ensure the smallness (relative to &a&lp) of
&(�&') V$ a&Lp , whereas the smallness of &�&'&Lp

does. Ultimately, the
Lp-distance between ' and various dilates of S1(,h) becomes the issue as
reflected in the hypothesis of the theorem.

Proof of Theorem 2.3. By (2.4) there exists A # (0 . . 0) such that

sup
0<r�h

dist(', S h
1(,r); Lp� )<Ah# \h # (0 . . h0]. (6.1)
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Let 1�p�p� . Since & }&Lp
�& }&Lp�

, we may assume WLOG that p� =p. Also,
there is no loss of generality in assuming that h0=1. Let h # (0 . . 1] and let
n :=n(h) be the largest integer for which h2n�1. Let #>0 and let f # B#, 1

p .
Let [ fk]k # Z+

be as in (2.1). We proceed now to define our approximation
to f from S h

p(,h). By (6.1), there exist gk # S1(,h) such that

&'&gk(2n&k } )&Lp
�A2&#(n&k), 0�k�n. (6.2)

(Note: 2&(n&k) is playing the role of h in (6.1), while h is playing the role
of r in (6.1). Equation (6.2) is a valid application of (6.1) because
0<h�2&(n&k)�1.) Since gk # S1(,h), it follows from the fact that Lp is a
Banach space that gk # Lp . Note that, by Lemma 5.12, & fk& lp(h2n&k Zd )<�
and hence

gk(2n&k } ) V$h2n&k fk= :
j # Zd

fk(h2n&kj) gk( }�h&2n&kj) # S h
p(gk), 0�k�n.

Since gk # S1(,h), it follows that Sp(gk)�Sp(,h). Hence,

sh := :
n

k=0

gk(2n&k } ) V$h2n&k fk # S h
p(,h).

Now,

" :
n

k=0

fk&sh"Lp

=" :
n

k=0

('&gk(2n&k } )) V$h2n&k fk"Lp

,

by Lemma 5.12 (1),

� :
n

k=0

&'&gk(2n&k } )&Lp
(h2n&k)d�p & fk& lp(h2n&kZd ) ,

by Lemma 5.1,

� :
n

k=0

A2&#(n&k) const(d ) & fk&Lp ,

by (6.2) and Lemma 5.12 (2),

�const(d ) A2&#n :
�

k=0

2k#& fk&Lp

�const(d, #) Ah# & f &Bp
#, 1(1) . (6.3)
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Therefore, by (6.3) and Lemma 5.12 (3), we conclude that

dist( f, S h
p(,h); Lp)�& f &sh&Lp�" f & :

n

k=0

fk"Lp

+" :
n

k=0

fk&sh"Lp

�const(d, A, #) h# & f &Bp
#, 1(') . K

Proof of Proposition 2.8. Let 0<r�h�h0 . Put f� :='̂�,� r(h } ). Then by
Wiener's lemma (Lemma 5.11), f # L1 . Since f� is compactly supported, we
have by Lemma 5.10 that & f & l1(hZd )<�. Hence ,r V$h f # S h

1(,r) and

(,r V$h f )7=,� r(h } ) :
j # Zd

'̂( } &2?j�h)

,� r(h } &2?j)
, by Lemma 5.10,

='̂+,� r(h } ) :
j # Zd "0

'̂( } &2?j�h)

,� r(h } &2?j)
.

Thus,

dist(', S h
1(,r); Lp� )�&,r V$h f &'&Lp�

="\,� r(h } ) :
j # Zd"0

'̂( } +2?j�h)

,� r(h } +2?j)+
7

"
Lp�

.

Hence (1). For the sake of proving (2), we may assume WLOG that

:
j # Zd"0

"\'̂,� r(h } +2?j)

,� r(h } ) +
6

"
Lp�

<�. (6.4)

Hence,

:
j # Zd"0

"\'̂,� r(h } +2?j)

,� r(h } ) +
6

"
Lp�

= :
j # Zd "0

"\,� r(h } )
'̂( } &2?j�h)

,� r(h } &2?j)+
6

"
Lp�

�" :
j # Zd"0 \,� r(h } )

'̂( } &2?j�h)

,� r(h } &2?j)+
6

"
Lp�

="\,� r(h } ) :
j # Zd"0

'̂( } +2?j�h)

,� r(h } +2?j)+
6

"
Lp�

,

where the first inequality and the last equality follow from the finiteness of
the second expression which follows from (6.4) and the first equality. Thus
(2) follows from (1).
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We consider now (3) where it is assumed that 2�p� ��. By Lemma 5.2,

"\,� r(h } ) :
j # Zd"0

'̂( } +2?j�h)

,� r(h } +2?j)+
6

"
Lp�

�const(d, p� ) ",� r(h } ) :
j # Zd "0

'̂( } +2?j�h)

,� r(h } +2?j)"Wq�
m(Rd )

=const(d, p� ) \ :
j # Zd "0

",� r(h } )
'̂( } +2?j�h)

,� r(h } +2?j)"
q�

W q�
m($C+2?j�h)+

1�q�

,

since supp '̂/$C,

=const(d, p� , ') \ :
j # Zd"0

",� r(h } +2?j)

,� r(h } ) "
q�

Wq�
m($C )+

1�q�

, since '̂ # C �
c .

Hence (3) follows from (1). K

Proof of Theorem 2.10. First note that S1(�h)�S1(,h) because
�h # S1(,h). Hence, �r V$h ' # S h

1(,r), 0<r�h�h0 . Let _ # C �
c be such that

:
j # Zd

_( } +j)=1.

Fix 0<r�h�h0 . Then

dist(', S h
1(,r); Lp� )�&'&�r V$h '&Lp�

=" :
j # Zd

_( } +j) '&�r V$h \ :
j # Zd

_( } + j) '+"
Lp�

,

since '= :
j # Zd

_( } + j) ',

=" :
j # Zd

(_( } +j) '&�r V$h (_( } + j) '))"
Lp�

� :
j # Zd

&_( } + j) '&� V$h (_( } +j) ')&Lp�

� :
j # Zd

:
k # Zd

&_( } + j) '

&�r V$h (_( } + j) ')&Lp� (k& j+C ) . (6.5)
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Let m>2 be so large that supp _/mC and supp _ & (k+C )=< when-
ever |k|�md. Now,

:
j # Zd

:
|k|<md

&_( } + j) '&�r V$h (_( } + j) ')&Lp� (k& j+C )

� :
j # Zd

*[ |k|<md ] &_( } + j) '&�r V$h (_( } + j) ')&Lp�

� :
j # Zd

(2md )d c2 &_( } + j) '&N h#

=const(d, _, ', c2 , N ) h#, by (ii). (6.6)

And,

:
j # Zd

:
|k|�md

&�r V$h (_( } + j) ')&Lp� (k& j+C )

� :
j # Zd

:
|k|�md

:
l # Zd

&_(hl+ j) '(hl) �r( } �h&l )&L�(k& j+C )

� :
j # Zd

:
|k|�md

const(d, _) h&d &_(h } + j) '(h } )&L�

_&�r&L�(h&1(k+(m+1) C )) ,

since _(hl+ j){0 only if l # h&1(mC& j),

� :
|k|�md

const(d, _, #) h&d c1(1+|k|�h)&(d+#) :
j # Zd

&_( } + j) '&L� ,

by (i),

�const(d, _, ', c1 , #) h#. (6.7)

Therefore, by (6.5), (6.6), and (6.7),

dist(', S h
1(,r); Lp� )�const(d, _, ', c1 , c2 , #, N ) h#. K

We make use of the following lemma in the proof of Theorem 2.11.

Lemma 6.8. Let ,h # L� , h # (0 . . h0]. Assume that there exists
# # (0 . . �) such that for some c, = # (0 . . �),

(i) |,h(x)|�c(1+|x| )&(d+W#X+=), \x # Rd, h # (0 . . h0];

(ii) m := inf
h # (0 . . h0]

|,� h(0)|>0.
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Put N :=[ j # Zd
+: | j | 1<#]. Then there exists ch # l1(Z d) with supp ch�N

such that with �h :=,h V$ ch ,

(1) &ch& l1�const(d, #, c, =, m) \h # (0 . . h0];

(2) (D:�� h)(0)=$0: \|:|<#, h # (0 . . h0].

Proof. Put k :=W#X and for functions f which are Ck&1 in a
neighbourhood of 0, let Pk&1 f be the unique polynomial of total degree
<k which satisfies (D:Pk&1 f )(0)=(D:f )(0) for all |:|<k. In other words,

Pk&1 f := :
|:|<k

(D:f )(0)
: !

( ):.

Fix h # (0 . . h0]. It follows from (i) that ,� h # Ck(Rd ). Put ph :=Pk&1 ,� h and
gh :=Pk&1(1�,� h), say ph=� |:|<k a:( ): and gh=� |:|<k b:( ):. Note that

Pk&1( ph gh)=Pk&1 \,� h

,� h
+=1.

Hence, �;�: b; a:&;=$0: , which allows the b: 's to be solved recursively
by

b:=a&1
0 \$0:& :

;<:

b; a:&;+ . (6.9)

Now, a&1
0 =,� h(0)&1�m&1 by (ii), and it follows from (i) that

|a: |�const(d, #, c, =) \ |:|<k.

Hence, by (6.9),

|b: |�const(d, #, c, =, m) \ |:|<k.

Claim 6.11. The mapping

q [ Pk&1 :
j # N

q( j) e& j

is a linear bijection of CN onto 6k&1. In particular, it is invertible.

Proof. It was shown in [9, Corollary 3.36] that the mapping

q [ Pk&1 :
j # N

q( j) e&ij
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is a linear bijection of CN onto 6k&1. So for each : # N, there exists
q: # CN such that Pk&1 �j # N q:( j) e&ij=( ):. Hence,

:
j # N

q: ( j)
( j } )n

n !
={0,

( ):,
if 0�n<k, n{|:|;
if n=|:|.

Therefore,

:
j # N

q:( j)
(&ij } )n

n !
={0,

(&i )n ( ):,
if 0�n<k, n{|:|;
if n=|:|.

Or, in other words, Pk&1 �j # N q( j) e&j=(&i ) |:| ( ): for all : # N. Since
[( ): : : # N] is a basis of 6k&1 (and since dim CN=dim 6k&1), the
claim is proved.

As a consequence of Claim 6.11, it follows that there exists ch # l1(Zd )
with supp ch�N such that

gh=Pk&1 :
: # N

ch(:) e&: ,

and

&ch&l1
�const(d, #) max

|:|<k
|b: |.

Thus, by (6.10), (1) is established. Put �h :=, V$ ch . Then, since (,h( } &:))7

=,� he&: , it follows that �� h=,� h �: # N ch(:) e&: . Hence

Pk&1�� h=Pk&1(,� h gh)=Pk&1( ph gh)=1.

Therefore, (2) holds. K

Proof of Theorem 2.11. We will be employing Theorem 2.10. Put
k :=W#X. Let N, m, ch , and �h be as in Lemma 6.8. Since supp ch�N and
in view of Lemma 6.8 (1), it follows that

|�h(x)|�const(d, #, c, =, m)(1+|x| )&(d+k+=),

\x # Rd, h # (0 . . h0]. (6.12)

In particular, condition(i) of Theorem 2.10 is satisfied. We now turn
toward the task of showing that condition(ii) of Theorem 2.10 holds. Let N
be the least positive integer for which

sup
f # Cc

�

&| } | 2k f� &W 1
d+1(Rd )+&(1+| } | k) f� &Lq�

& f &N
<�.
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Let f # C �
c , h # (0 . . h0] and r # (0 . . h]. Define fh by f� h :='̂(h } ) f� . Note that

&�r V$h f & f &Lp� �&�r V$h ( f & fh)&Lp� +& fh& f &Lp� +&�r V$h fh& fh&Lp� . (6.13)

Claim 6.14.

&�r V$h ( f & fh)&Lp� +& fh& f &Lp� �const(d, #, c, =, m, $ ) h# & f &N .

Proof. By Lemma 5.1,

&�r V$h ( f & fh)&Lp� �&�r&Lp�
hd�p� & f & fh& lp� (hZd )

�const(d, #, c, =, m) hd�p� & f & fh& lp� (hZd ) , by (6.12)

�const(d, #, c, =, m) &(1+|x| )d+1 ( f & fh)&L� .

Since it is also true that & fh& f &Lp� �const(d ) &(1+|x| )d+1 ( f & fh)&L�, in
order to prove the claim, it suffices to show that

&(1+|x| )d+1 ( f & fh)&L��const(d, #, $ ) h# & f &N .

Now

&(1+|x| )d+1 ( f & fh)&L�

�const(d ) &(1&'̂(h } )) f� &W1
d+1(Rd )

�const(d, #) h2k &(1&'̂(h } )) |h } |&2k&W�
d+1(Rd ) &| } | 2k f� &W1

d+1(Rd )

�const(d, #, $ ) h# &| } | 2k f� &W1
d+1(Rd ) , since '̂=1 on 1

2 $C,

�const(d, #, $ ) h# & f &N .

Hence the claim.

In view of (6.13) and Claim 6.14, condition (ii) of Theorem 2.10 will be
satisfied if we show that there exists N # N such that

&�r V$h fh& fh&Lp� �const(d, #, c, =, m, $ ) h# & f &N . (6.15)

By the Hausdorff�Young theorem (cf. 23, p. 142])

&�r V$h fh& fh&Lp�

�const(d ) &(�r V$h fh& fh)7&Lq�

=const(d ) "�� r(h } ) :
j # Zd

f� h( } &2?j�h)& f� h"Lq�

, by Lemma 5.10,

�const(d ) &(�� r(h } )&1) f� h&Lq�

+const(d ) \ :
j # Zd"0

&�� r(h } +2?j) f� h&q�
Lq� +

1�q�

, (6.16)
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since supp f� h�h&1 $C. By Lemma 6.8 (2),

|�� r(x)&1|�const(d, #) |x| k &�� r&Wk
�($C ) \x # $C.

By (6.12), &�� r&W k
�($C )�const(d, #, c, =, m). Hence

"�� r&1
| } | k "L�($C )

�const(d, #, c, =, m).

Therefore,

&(�� r(h } )&1) f� h&Lq� =hk "�� r(h } )&1
|h } |k | } |k '̂(h } ) f� "Lq�

�hk "�� r&1
| } |k "L�($C )

&| } |k f� &Lq� , since supp '̂/$C,

�const(d, #, c, =, m) hk & f &N . (6.17)

Now, for j # Z d"0,

&�� r(h } +2?j) f� h&Lq� =h# "�� r(h } +2?j)
h#+|h } | # (1+| } | #) '̂(h } ) f� "Lq� (h&1 $C )

�h# "�� r( } +2?j)
h#+| } | # "L�($C )

&(1+| } | #) f� &Lq�

�const(d, #) h# "�� r( } +2?j)
r#+| } | # "L�($C )

& f &N ,

since 0<r�h,

�const(d, #, c, =, m) h# ",� r( } +2?j)
r#+| } | # "L�($C)

& f &N ,

since �� r = ,� r �: # N cr (:) e&: and &�: # N cr (:) e&:&L� � &cr& l1 �
const(d, #, c, m) by Lemma 6.8 (1). Therefore

\ :
j # Zd"0

&�� r(h } +2?j) f� h&q�
Lq� +

1�q�

�const(d, #, c, =, m) h# & f &N A($, #, q� ). (6.18)

Hence, by (6.15), (6.16), (6.17), and (6.18), we conclude that condition (ii)
of Theorem (2.10) is satisfied. The proof is now completed by applying
Theorem 2.10. K
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7. THE STRANG�FIX CONDITIONS

In this section we address the task of finding reasonable side conditions
under which it can be proven that if , satisfies the Strang�Fix conditions
of order k and ,� (0){0, then (Sh(,))h provides Lp-approximation of order
k. For example, in Theorem 1.4 (by Jia and Lei) it is proven that under
conditions (i) and (ii) of Theorem 1.4, the Strang�Fix conditions guarantee
``controlled'' Lp-approximation of order k for all 1�p��. The problem
with the strong decay assumption of condition (i) is that it implies that ,�
is globally smooth, whereas in some applications, ,� is only smooth away
from the origin. It is thus desirable to find side conditions which do not
require ,� to be smooth near the origin. This was achieved for p=2 by
de Boor et al. in [4]. In order to state their result we introduce the potential
spaces

W \
2 :=[ f # L2 : & f &W2

\ :=&(1+| } | 2)\�2 f� &L2
<�], \�0.

We also need local versions of these spaces. If \ is an integer and 0/Rd

is open, then W \
2(0) is simply the Sobolev space defined in Section 1. It is

fairly easy to see by the Plancherel theorem (cf. [32, Theorem 7.9]) that
W \

2(Rd )=W \
2 and that their norms are equivalent. In this case (\ # Z+),

if [0;]; is a collection of disjoint open sets, then with 0 :=�; 0;

:
;

& f &2
W2

\(0;)=& f &2
W 2

\(0) .

For non-integer \, there are several equivalent ways of defining W \
2(0) (cf.

[1, Chap. 7]) so that W \
2(Rd )=W \

2 (with equivalent norms). In this case
we have the subadditive property

:
;

& f &2
W2

\(0;)�const(d, \, [0;];) & f &2
W2

\(0) , (7.1)

whenever, say, [0;]; is a disjoint collection of cubes and 0 :=�; 0; . We
can now state the relevent result of [4].

Theorem 7.2. Let , # L2 and k # N. Assume that ,� # W \
2($C+2?Zd "0)

and ,� >= a.e. on $C for some $, =>0 and \>k+d�2. If , satisfies the
Strang�Fix conditions of order k, then the stationary ladder (S h(,))h

provides L2-approximation of order k.

Proof. cf. [4; Theorem 5.14].

Note that the side condition, ,� # W \
2($C+2?Z d"0), does not impose

any smoothness on ,� near the origin and is implied by a strong decay of
, (e.g., condition (i) of Theorem 1.4).
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There have been other attempts to give side conditions under which the
Strang�Fix conditions of order k and ,� (0){0 imply Lp -approximation of
order k (say, in the sense of (1.1)), namely, [8, Theorem 3.5] ( p=�) and
[21, Theorem 3.9 (2�p<�) and Theorem 4.8 (1<p<�)]. When
2<p��, the above-mentioned results are successful in that their side con-
ditions require no smoothness of ,� near the origin, but fall short of the
standard established by [4] in that their side conditions are not implied by
a strong decay of ,. The side conditions of [21, Theorem 4.8] require a
smoothness (increasing with k) of ,� near the origin and are not implied by
a strong decay of ,.

We state now the present contributions which derive from Theorem 2.3
in conjunction with Proposition 2.8 (1).

Theorem 7.3. Let p� # [1, 2]. Let , # Lp� and k # N be such that
,� # W \

2(=C+2?Zd "0) for some = # (0 . . 2?) and \>k+d�2. In case p� =2
assume additionally that ,� # Cm(=C ), where m is the least integer satisfying
m>d�2. If ,� (0){0 and , satisfies the Strang�Fix conditions of order k
(1.3), then the stationary ladder (S h

p(,))h provides Lp-approximation of order
k for all 1�p�p� .

Note that the case p� =1 is very satisfactory in that the side conditions
impose no smoothness assumption on ,� near the origin and they are
implied by a strong decay of , (e.g., condition (i) of Theorem 1.4).
However, for the case p� =2, we do impose a (fixed) smoothness assump-
tion on ,� near the origin. Nonetheless, the side conditions are implied by
a sufficiently strong decay of , (e.g., if k>d�2, then condition (i) of
Theorem 1.4 suffices).

Our result for the case 2<p� �� is as follows.

Theorem 7.4. Let 2<p� �� and let q� be the exponent conjugate to p�
(i.e., satisfying 1�p� +1�q� =1). Let m be the least integer greater than d�q� . Let
k # N and define

\ :={k+d,
min N & (k+d�q� . . �),

if p� =�;
if 2<p� <�.

Let , # Lp� satisfy ,� # Cm(=C ) and ,� # W \
q� (=C+2?Z d"0) for some =>0. If

,� (0){0 and , satisfies the Strang�Fix conditions of order k (1.3), then the
stationary ladder (S h

p(,))h provides Lp -approximation of order k for all
1�p�p� .

Note that the side conditions impose a (fixed) smoothness assumption of
,� near the origin, and they are not implied by a strong decay of ,.
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Proof of Theorem 7.3 and Theorem 7.4. In case p� # [1, 2], put q� :=2.
Assume that , satisfies the Strang�Fix conditions of order k and ,� (0){0.
Then there exists $ # (0 . . =) such that ,� {0 on all of $C. Let ' # Cc

�@ satisfy
supp '̂/$C and '̂=1 on 1

2 $C. Then the hypothesis of Proposition 2.8 is
satisfied and the estimate (1) reduces to

dist(', S h
1(,); Lp� )�"\,� (h } ) :

j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) +
6

"
Lp�

=: 1(h).

In view of Theorem 2.3, in order to prove Theorems 7.3 and 7.4, it suffices
to show that

1(h)=O(hk) as h � 0. (7.5)

Let _ # C �
c satisfy supp _/$C and _=1 on supp '̂.

Claim 7.6. If p� =1 then

1(h)�const(d, ', , ) "\,� (h } ) :
j # Zd"0

_( } +2?j�h)+
6

"L1

\h # (0 . . 1
2).

Proof. Fix h # (0 . . 1
2), and define

{ :=\ '̂

,� (h } )+
6

� :=\,� :
j # Zd"0

_(h&1( } +2?j))+
6

.

For the purpose of proving this claim, there is no loss of generality in
assuming that � # L1 . Now,

1(h)="\,� (h } ) :
j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) +
6

"L1

="\,� (h } ) :
j # Zd"0

_( } +2?j�h) :
j # Zd

'̂( } +2?j�h)

,� (h } +2?j) +
6

"L1

=&� V$h {&L1
, by Lemma 5.10,

�&�&L1
hd &{& l1(hZd) , by Lemma 5.1,

�const(d ) &�&L1
&{&L1

, by Lemma 5.6,

=const(d ) &h&d�( } �h)&L1
&{&L1

=const(d ) "\,� (h } ) :
j # Zd"0

_( } +2?j�h)+
6

"L1
"\ '̂

,� (h } )+
6

"L1

.
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Note that since h # (0 . . 1
2),

"\ '̂

,� (h } )+
6

"L1

="\'̂(h } ) '̂

,� (h } ) +
6

"L1

�&'&L1 "\'̂(h } )

,� (h } )+
6

"L1

=&'&L1 "\ '̂

,� +
6

"L1

<� by Wiener's lemma.

Therefore,

1(h)�const(d, ') &'&L1 "\'̂

,� +
6

"L1
"\,� (h } ) :

j # Zd"0

_( } +2?j�h)+
6

"L1

=const(d, ', , ) "\,� (h } ) :
j # Zd"0

_( } +2?j�h)+
6

"L1

,

thus proving the claim.

Claim 7.7.

1(h)�const(d, p� , ,, ', _) &,� (h } )&W q�
m($C+h&12?Z

d"0) \h # (0 . . 1
2).

Proof. Fix h # (0 . . 1
2).

Case 1. p� =1.

By Claim 7.6,

1(h)�const(d, ', , ) "\,� (h } ) :
j # Zd"0

_( } +2?j�h)+
6

"L1

�const(d, ', , ) ",� (h } ) :
j # Zd"0

_( } +2?j�h)"W2
m
, by Lemma 5.2,

�const(d, ', , ) " :
j # Zd"0

_( } +2?j�h)"W m
�

&,� (h } )&W2
m($C+h&12?Z

d"0) ,

since supp _/$C,

=const(d, ', ,, _) &,� (h } )&W2
m($C+h&12?Z

d"0) , since _ # C �
c .

Case 2. 2�p� ��.

Recall that in this case we assume that ,� # Cm($C� ). Hence,

" :
j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) "Wm
�

=" '̂

,� (h } )"Wm
�

�const(d, ', ,).
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Thus,

1(h)="\,� (h } ) :
j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) +
6

"
Lp�

�const(d, p� ) ",� (h } ) :
j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) "W q�
m

, by Lemma 5.2,

�const(d, p� ) " :
j # Zd"0

'̂( } +2?j�h)

,� (h } +2?j) "W m
�

&,� (h } )&Wq�
m($C+h&12?Z

d "0)

�const(d, p� , ', , ) &,� (h } )&Wq�
m($C+h&12?Z

d"0) ,

thus completing the proof of the claim.

Therefore, with (7.5) and Claim 7.7 in view, in order to prove the
theorems, it suffices to show that

&,� (h } )&Wq�
m($C+h&12?Z

d"0)=O(hk) as h � 0. (7.8)

Following [4], note that since \�k+d�q� , with equality only if q� =1, it
follows by the Sobolev imbedding theorem (cf. [1, pp. 97, 217]) that
W \

q� ($C ) is continuously imbedded in Ck($C ) (the latter being taken as a
closed subspace of W k

�($C )). Hence, since ,� ( } +2?j) # W \
q� ($C ) we have

,� ( } +2?j) # Ck($C ), \j # Z d"0, and

max
|;|�k

&(D;,� )( } +2?j)&L�($C )�const(d, \, k, $ ) &,� ( } +2?j)&Wq�
\($C ) ,

\j # Z d"0. (7.9)

Thus the Strang�Fix conditions of order k are meaningful and as a conse-
quence of their being satisfied we have

|(D:,� )(x+2?j)|�const(d, k) |x| k&|:| max
|;|=k

&(D;,� )( } +2?j)&L�($C )

�const(d, \, k, $ ) |x|k&|:| &,� ( } +2?j)&W q�
\($C )

\x # $C, j # Zd"0, |:|�k, (7.10)

where the last inequality follows from (7.9).

Claim 7.11.

&,� (h } )&Wq�
m($C+h&12?j)�const(d, p� , \, k, $ ) hk &,� &Wq�

\($C+2?j)

\h # (0 . . 1
2), j # Z d"0.
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Proof. Let j # Z d"0, h # (0 . . 1
2). Then

&,� (h } )&Wq�
m($C+h&12?j)=&,� (h } +2?j)&W q�

m($C)

=\ :
|:|�m

&D:(,� (h } +2?j))&q�
Lq� ($C)+

1�q�

=\ :
|:|�m

h |:| q� &(D:,� )(h } +2?j)&q�
Lq� ($C )+

1�q�

.

Hence, in order to prove the claim, it suffices to show that

h |:| &(D:,� )(h } +2?j)&Lq� ($C )�const(d, p� , \, k, $ ) hk &,� &Wq�
\($C+2?j) , (7.12)

for all |:|�m. For that, let |:|�m.

Case 1. |:|�k.

Applying (7.10) to the left side of (7.12) yields

h |:| &(D:,� )(h } +2?j)&Lq� ($C )�h |:| const(d, \, k, $ ) hk&|:|

_&,� ( } +2?j)&W q�
\($C) &| } | k&|:|&Lq� ($C )

�const(d, p� , \, k, $ ) hk &,� &W q�
\($C+2?j) .

Therefore, (7.12) holds.

Case 2. |:|>k.

Assume without loss of generality that \<k+d�q� +1. Put q :=
d�( |:|&k). Note that

�>q�
d

m&k
�

d
d�q� +1&k

�
d

d�q�
=q� ;

q=
d

|:|&k
�

d
|:|&(\&d�q� )

=
dq�

d&(\&|:| ) q�
;

\&d�q� +d�q=\&d�q� +|:|&k�|:|;

\�|:| with equality only if q=q� .

Hence, by the Sobolev imbedding theorem (cf. [1, pp. 97, 218]), W \
q� ($C )

is continuously imbedded in W |:|
q ($C ). In particular,

&D:g&Lq($C )�const(d, p� , \, k, $ ) &g&Wq�
\($C ) , \g # W \

q� ($C). (7.13)
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Put r=q�q� and let r$ denote the conjugate exponent of r (i.e., satisfying
1�r+1�r$=1). Then,

(h |:| &(D:,� )(h } +2?j)&Lq� ($C ))
q�

=h |:| q� |
$C

|(D:,� )(hx+2?j)|q� dx

=h |:| q� &d |
h$C

|(D:,� )(x+2?j)| q� dx

�h |:| q� &d &|(D:,� )( } +2?j)|q� &Lr(h $C) &1&Lr$(h $C ) ,

by Ho� lder's inequality,

=h |:| q� &d &(D:,� )( } +2?j)&q�
Lq(h $C ) (h$ )d�r$

�const(d, p� , \, k, $ ) h |:| q� &d+d�r$ &(D:,� )( } +2?j)&q�
Lq($C )

�const(d, p� , \, k, $ ) h |:| q� &d+d�r$ &,� ( } +2?j)&q�
Wq�

\($C ) by (7.13),

=const(d, p� , \, k, $ ) hkq� &,� &q�
W q�

\($C+2?j) .

Therefore, (7.12) holds, and hence the claim.
Now,

&,� ( } )&q�
Wq�

m($C+h&12?Z
d"0)= :

j # Zd "0

&,� (h } )&q�
Wq�

m($C+h&12?j)

�const(d, p� , \, k, $ ) hkq� :
j # Zd"0

&,� &q�
W q�

\($C+2?j) ,

by Claim 7.11,

�const(d, p� , \, k, $ ) hkq� &,� &q�
Wq�

\($C+2?Z
d"0) ,

which, in view of (7.8), proves the theorems. K

8. PROOF OF PROPOSITION 3.7

The notation used in the following lemma is of course a silly abstraction
of the hypothesis of Proposition 3.7; it serves simply to disarm the usual
d-tuple representation of Rd which, in the present situation, only gets in the
way.

Lemma 8.1. Let X be a d-dimensional Hilbert Space over R. Let 5 be a
finite multiset of linear functionals defined on X, and suppose that

*[! # 5 : ! } x{0]�2, \x # X"0. (8.2)
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Then there exists = # (0 . . 1) such that

|
X

`
! # 5

1
1+|! } x| 1&= dmd (x)<�,

where md is d-dimensional Lesbegue measure on X.

Proof. For = # (0 . . 1) define

f=(x; 5) := `
! # 5

1
1+|! } x| 1&= , x # X.

The lemma is true when d=1 because in that case,

|
X

f1�4(x; 5) dm1(x)�const(5) |
�

0

dt
1+t3�2<�.

Proceeding by induction, assume that the lemma is true whenever
1�d�d $. Consider d=d $+1. WLOG we may assume that 0 � 5. We
define the following two sets:

H :=[!= : ! # 5];

X0 :=[x # X : ! } x{0 for all ! # 5].

Note that H is a finite collection of hyperplanes and X0=X"� H. Hence
md (X"X0)=0. Now X0 can be partitioned into finitely many open cells via
the equivalence relation

xty if (! } x)(! } y)>0 \! # 5. (8.3)

Let 0 be the collection of these cells. Since *0<�, in order to prove the
lemma, it suffices to show that for all 0 # 0 there exists = # (0 . . 1) such that

|
0

f=(x; 5) dmd (x)<�. (8.4)

So let 0 # 0. Fix { # 0.

Claim 8.5.

0/ .
H # H

.
t>0

(t{+(�0 & H )).

Proof. Let x # 0. Since { # 0 and with (8.3) in view, it follows that
for each ! # 5, there exists t!>0 such that ! } (x&t!{)=0. Letting
t :=min! # 5 t! , it is easy to see that x&t{ # �0 & H for some H # H, thus
proving the claim.
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Since *H<� and with (8.4) and Claim 8.5 in view, in order to prove
the lemma, it suffices to show that for all H # H there exists = # (0 . . 1) such
that

|
�t>0 t{+(�0 & H )

f=(x; 5) dmd (x)<�. (8.6)

Let H # N. Note that H is a d&1-dimensional Hilbert space and that

*[! # 5 : ! } x{0]�2, \x # H"0.

Therefore by the induction hypothesis, there exists = # (0 . . 1
3) such that

|
H

f3=(x; 5) dmd&1(x)<�. (8.7)

Since X=H�span[{], it follows by Fubini's theorem that

|
�t>0 t{+(�0 & H)

f=(x; 5) dmd (x)

�const(H, {) |
�

0
|

t{+(�0 & H )
f=(x; 5) dmd&1(x) dt

=const(H, {) |
�

0
|

�0 & H
f=(x+t{; 5) dmd&1(x) dt. (8.8)

Note that if x # �0, then (! } x)(! } {)�0 for all ! # 5. Hence,

|! } (x+t{)|=|! } x|+|! } t{|, \x # �0, t�0, ! # 5. (8.9)

By (8.2) and the definition of H, there exist !0 , !1 # 5, distinct in the multi-
set sense, such that !0==H and !1 } {{0.

We wish now to use the following inequality which can be derived
simply by considering separately the cases s+t�1 and s+t<1. If :, ;�0,
then

1
1+(s+t):+;�

3
(1+s:)(1+t;)

, \s, t�0. (8.10)

We will apply this inequality with :=2= and ;=1&3= which is valid since
= # (0 . . 1

3). Now, for t>0 and x # �0 & H,
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f=(t{+x; 5)= `
! # 5

1
1+(|! } t{|+|! } x| )1&= , by (8.9)

=
1

1+|!0 } t{| 1&= `
! # 5"!0

1
1+(|! } t{|+|! } x| )1&= ,

since !0 } x=0,

�
1

1+|!0 } t{| 1&= `
! # 5"!0

3
(1+|! } t{| 2=)(1+|! } x|1&=)

, by (8.10),

�
1

(1+|!0 } t{| 1&=)(1+|!1 } t{| 2=)
`

! # 5"!0

3
1+|! } x| 1&3=

=
1�3

(1+|!0 } t{| 1&=)(1+|!1 } t{| 2=)
`

! # 5

3
1+|! } x| 1&3= ,

since !0 } x=0,

�const(5, {, !0 , !1)
1

1+t1+= f3=(x; 5).

Therefore,

|
�

0
|

�0 & H
f=(t{+x; 5) dmd&1(x) dt

�const(5, {, !0 , !1) |
�

0

1
1+t 1+= |

�0 & H
f3=(x; 5 ) dmd&1(x) dt<�,

by (8.7)

Thus, in view of (8.8) and (8.6), the lemma is proved. K

Lemma 8.11. For all x # Rd,

inf[ |nx& j | : n # N and j # Zd ]=0.

Proof. For x # Rd, let C(x) be the unique element of [&1
2 . . 1

2)d such
that x&C(x) # Z d. Note that

|C(x)|=inf[ |x& j | : j # Zd ], \x # Rd.

Fix x # Rd and let =>0. Since C(nx) # [&1
2 . . 1

2]d for all n # N, there exists
y # [&1

2 . . 1
2]d and m, n # N with m<n such that

|C(mx)&y|+|C(nx)&y|<=.
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Hence,

|C((n&m) x)|�|C(mx)&C(nx)|�|C(mx)&y|+|C(nx)&y|<=. K

Proof of Proposition 3.7. Assume that k$(5 )�2. Put R :=max! # 5 |!|
and $ :=1�(2R). We will show first of all that

*[! # 5 : ` } x{0]�2, \x # Rd"0. (8.12)

Let x # Rd"0. By Lemma 8.11, there exists n # N and j # Z d "0 such that
|nx&j |<$. Now if ! # Kj , then |! } j |�1. Hence,

|! } nx|�|! } j |&|! } (nx& j )|�1&|!| |nx&j |� 1
2 .

Therefore,

*[! # 5 : ! } x{0]�*Kj�2,

and hence (8.12). Therefore by Lemma 8.1,

|
Rd

`
! # 5

dx
1+|! } x|

<�. (8.13)

Now, if j # Zd"0 and x # j+$B, then

`
! # 5

1
1+|! } j |

� `
! # 5

1
1+|! } x|&|! } (x&j )|

� `
! # 5

1
1�2+|! } x|

� `
! # 5

2
1+|! } x|

.

Therefore,

:
j # Zd"0

`
! # 5

1
1+|! } j |

�
1

md ($B)
:

j # Zd "0
|

j+$B
`

! # 5

2
1+|! } x|

dx

�const(d, $, 5) |
Rd

`
! # 5

1
1+|! } x|

dx<�

by (8.13). K
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